triangular factorization造句
例句与造句
- We give the triangular factorization algorithm of toeplitz type matrices in the end
继而推导toeplitz型矩阵的快速三角分解算法。 - We give the triangular factorization algorithm of loewner type matrices in the end
继而推导loewner型矩阵的快速三角分解的算法。 - We give the triangular factorization algorithm of symmetric loewner type matrices in the end
继而推导对称loewner型矩阵的快速三角分解算法。 - It is mainly to some simple matrices to the research of the fast triangular factorization algorithms of special matrices up to now
对于特殊矩阵的快速三角分解算法的研究,目前主要是对一些较简单的矩阵进行的。 - In 7 , we first give the definition of hankel matrices , then we give the triangular factorization algorithm of the inversion of hankel matrices
在7中,首先给出hankel矩阵的定义,然后推导hankel矩阵的逆矩阵的快速三角分解算法。 - It's difficult to find triangular factorization in a sentence. 用triangular factorization造句挺难的
- In 4 , we first give the definition of loewner type matrices , then we give the triangular factorization algorithm of the inversion of loewner type matrices
在4中,首先给出loewner型矩阵的定义,然后推导loewner型矩阵的逆矩阵的快速三角分解算法。 - In 3 , we first give the definition of toeplitz type matrices , then we give the triangular factorization algorithm of the inversion of toeplitz type matrices
在3中,首先给出toeplitz型矩阵的定义,然后推导toeplitz型矩阵的逆矩阵的快速三角分解算法。 - In 6 , we first give the definition of vandermonde type matrices , then we give the triangular factorization algorithm of the inversion of vandermonde type matrices
在6中,首先给出vandermonde型矩阵的定义,然后推导vandermonde型矩阵的逆矩阵的快速三角分解算法。 - In 5 , we first give the definition of symmetric loewner type matrices , then we give the triangular factorization algorithm of the inversion of symmetric loewner type matrices
在5中,首先给出对称loewner型矩阵的定义,然后推导对称loewner型矩阵的逆矩阵的快速三角分解算法。 - In this paper , we research some more general special matrices , for example , teoplitz type matrices , loewner type matrices , symmetrical loewner matrices and vandermonde type matrices , and so on . we respectively get their fast triangular factorization algorithms according to the character of these special matrices
本文研究更广类型的一些特殊矩阵,如toeplitz型矩阵、 loewner型矩阵、对称loewner型矩阵以及vandermonde型矩阵等,根据这些特殊矩阵的结构特点,给出了相应的快速三角分解算法。